
COL 11(5), 050901(2013) CHINESE OPTICS LETTERS May 10, 2013

Fast compression of computer-generated holographic

images based on a GPU-accelerated skip-dimension

vector quantization method

Y. K. Lam∗, W. C. Situ, and P. W. M. Tsang

Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue,

Kowloon, Hong Kong, China
∗Corresponding author: kinglam4@student.cityu.edu.hk

Received December 25, 2012; accepted January 27, 2013; posted online April 19, 2013

A method for fast and low bit-rate compression of digital holograms based on a new vector quantization
(VQ) method known as the skip-dimension VQ (SDVQ) is proposed. Briefly, a complex hologram is
converted into a real off-axis hologram, and partitioned into a set of image vectors. The image vectors
are passed into a graphic processing unit (GPU), and compressed through SDVQ into a set of code
indices considerably smaller in data size than the source hologram. Experimental evaluation reveals that
our scheme is capable of compressing a digital hologram to a compression ratio of over 500 times, in
approximately 20–22 ms.

OCIS codes: 090.0090, 100.0100, 200.0200.
doi: 10.3788/COL201311.050901.

In the past two decades, investigation on computer-
generated holography (CGH)[1] has become an area of
immense interest. The approach enables holograms of
real objects and synthetic computer graphic (CG) mod-
els to be implemented without the expensive and preci-
sion setup of optical equipments. Fueled by the rapid
advancement of computing technology, it has been an-
ticipated that CGH can become a novel technological
advancement for three-dimensional (3D) televisions[2].
In practice, a digital Fresnel CGH can be generated
using the point light concept, which, as explained in
Ref. [3], is a numerical realization of the zone-plate ap-
proach in holography. Mathematically, given a set of
self-illuminating 3D object points O(x, y, z) = [o0(x0,
y0, z0), o1(x1, y1, z1), · · · , oN−1(xN−1, yN−1, zN−1)], the
digital Fresnel hologram H (x, y) can be generated by

H (x, y) =
N−1
∑

j=0

aj

rj

exp (iwnrj) , (1)

where wn = 2π/λ is the wave number of the laser light,
with λ is the wavelength of the laser, and aj repre-
sents the amplitude of the jth object point. The term

rj =
√

(xj − x)
2

+ (yj − y)
2
+ z2

j is the distance between

an object point at (xj , yj, zj) and a point (x, y) on the
hologram. Without loss of generality, the hologram is
positioned on the x − y plane (i.e., on the z= 0 plane),
and the object point is at an axial distance zj away from
the hologram. Subsequently, the source 3D scene can
be reconstructed by displaying it on a high resolution
display, e.g., the liquid crystal on silicon (LCOS) device.
One major concern associated with CGH is the enor-
mous amount of data required to record a hologram. In
the past, a number of solutions have been proposed to
provide moderate hologram compression, including, but
are not limited to, the early works of Sasaki et al.[4], and
more recently, the use of Fresnelets[5], companding[6], his-
togram approach[7], and vector quantization (VQ)[8−10].

Among these methods, the VQ scheme[9,10] has particu-
larly attractive considerable attention. Briefly, a complex
hologram is converted into a real off-axis (ROA) holo-
gram, and decomposed into a set of image vectors. VQ is
applied to determine the index of the nearest codevector
(based on the Euclidean distance) from a given collection
of vectors known as the codebook for each image vector.
The list of code indices is either stored as a compressed
file, or transmitted to the receiving end via certain dis-
tribution channel(s). The corresponding codevector is
fetched from the codebook for each index and taken to
approximate the image vector to recover the hologram
from the compressed data. Compared with the existing
methods, the adoption of VQ in holographic compression
has the advantages of high compression ratio, low com-
plexity decompression, and high immunity to corruption
of the encoded data.

Despite these favorable outcomes, the method suffers
from the shortcoming of a computational intensive encod-
ing process. With a typical personal computer (PC), the
time for compressing a moderate-size hologram through
central processing unit (CPU) is nearly one second, which
is too lengthy for real time application. In this letter, we
propose a solution to overcome this problem using a VQ
variation known as the “skip-dimension vector quantiza-
tion” (SDVQ), such that the time taken to determine the
nearest codevector for each image codevector can be re-
duced. Moreover, we encapsulate the encoding process to
a form that can be executed in a parallel fashion, based
on the fragment shader, in a graphic processing unit
(GPU). Experimental evaluation reveals that our pro-
posed method is capable of compressing a 2 048×2 048
(pixel), medium-size hologram in around 20–22 ms.

VQ[11] is a classical compression method that can
be interpreted as a mapping G : Rk → C convert-
ing each vector in a k-dimensional Euclidean space
Rk to the nearest counterpart in a finite set C =
{

ci ∈ Rk : i = [0, N − 1]
}

of vectors. The finite set is
recorded into a database commonly referred to as the

1671-7694/2013/050901(5) 050901-1 c© 2013 Chinese Optics Letters



COL 11(5), 050901(2013) CHINESE OPTICS LETTERS May 10, 2013

Fig. 1. Partitioning of the integrated hologram plane into
non-overlapping blocks.

Table 1. LBG Algorithm in Codebook Generation[12]

Step Operation

1 Generate an Initial Codebook C = [c0, c1, · · · , cN−1]

from Randomly Selected Vectors in T .

2 For each Vector in T , Apply Eq. (2) to Locate the

Centroid in the Codebook Nearest to It.

3 Update Each Centroid by Averaging the Vectors

Associated with It.

4 Determine the Total Error between the Centroids

Obtained in Step 3 and the Vectors Associated

with Each of Them.

5 If the Error is Below a Pre-defined Threshold,

Terminate the Process and Output the Codebook C.

6 Go to Step 2.

codebook. ci, i, and N are referred to as the codevector,
index (i.e., the transmission label), and codebook size, re-
spectively. In the compression process, each vector sj in
a set of source data S = {s0, s1, · · · , sM−1}sj∈Rk|06j<M

is mapped to the nearest codevector cq in C accord-
ing to the minimum Euclidean distance criteria, i.e.,
d (sj , cq) 6 d (sj , ci) for i = [0, N − 1]. The term d (sj , cq)
represents the Euclidean distance (sometimes referred to
as the error) between the codevector and the image vec-
tor, given by

d (sj , cq) =

√

√

√

√

k−1
∑

m=0

(

sm
j − cm

q

)2
, (2)

where sm
j and cm

q represent the mth dimension of vectors
sj and cq, respectively.

After compression with VQ, each of the k-dimensional
vector sj in the set S is replaced by an integer index i.
The index i is taken to extract the corresponding vector
cq in the codebook to approximate the input vector sj to
recover the source data from the compressed data. Sup-
pose the value of the input vector is quantized with Q
bits and there are N vectors in the codebook (where N
is a power of 2), the compression ratio (CR) is then given
by

CR =
k × Q

log2 N
. (3)

Compressing a set of vectors S with VQ requires a code-
book C. This process is usually conducted with the

Linde-Buzo-Gray (LBG) algorithm[12] by clustering a set
of vectors T = {t0, t1, · · · , tN−1} into N codevectors (also
referred to as the centroids). The details have been re-
ported in Ref. [12]; thus, this study will only show the
essential steps, as listed in Table 1. If C is generated
from the source data to be compressed (i.e., T = S), the
codebook is termed in-training set. Otherwise, it will be
referred to as out-training set.

The complex hologram is denoted by H (x, y), where
x and y are the horizontal and vertical axis. Reducing
the data size of the hologram, H (x, y) is first converted
into a ROA hologram by mixing with a inclined refer-
ence plane wave B (y), and preserving the real part of
the result as

HR (x, y) = Re [B (y)H (x, y)] , (4)

where Re[·] represents the real part of the quantity being
bracketed, and HR (x, y) is a real hologram plane that is
only half the data size of the complex hologram. When
HR (x, y) is illuminated with an off-axis planar beam, a
virtual and a real twin images are reconstructed. How-
ever, these two images are separated from each other by
an angle due to the incorporation of the off-axis refer-
ence beam. HR (x, y) is thereby subsequently compressed
with VQ.

Next we describe the application of classical VQ in
compressing the ROA hologram obtained above. Ini-
tially, HR (x, y) is partitioned into non-overlapping
square image blocks of size b × b, as shown in Fig. 1.
An enlarged view of the jth image block in the holo-
gram is shown in Fig. 2, illustrating the labeling of each
pixel from first element pj;0 at the top-left corner to
the last element pj;b2−1 at the bottom-right corner. The
pixel sequence in the image block is represented with a
k-dimensional vector sj , where sm

j = pj;m

∣

∣

06m<b2 and

k = b2. Given the horizontal and vertical extents of the
hologram as X and Y , respectively, there will be Y /b
blocks in each row and X/b blocks in each column, con-
stituting to a total of M= XY /b2 vectors. A collection
of vectors from the M image blocks forms the data set
S = {s0, s1, · · · , sM−1}sj∈Rk|06j<M

. If HR (x, y) is uti-

lized to build a codebook, its set of vectors S is trained
by the LBG algorithm depicted in Table 1 to generate
the codebook C.

If HR (x, y) is a hologram to be compressed, the er-
ror between each vector in S and all the codevectors in
C are computed using Eq. (2). Subsequently, each vector

Fig. 2. Enlarged view of an image block in HR (x, y).

050901-2



COL 11(5), 050901(2013) CHINESE OPTICS LETTERS May 10, 2013

Table 2. Texture of a Single k-dimensional Image Vector

Texel 0 1 —– (k/4) − 1

Image Vector pj;0, pj;1, pj;2, pj;3 pj;4, pj;5, pj;6, pj;7 —– pj;k−4, pj;k−3, pj;k−2, pj;k−1

is labeled by the index of codevector C, which is nearest
in terms of the distance among all the members in the
codebook. This process results in a sequence of integer
labels L = {l0, l1, · · · , lM−1}, each corresponding to a
unique block vector in S. Each index lj will be taken
to extract the corresponding vector in the codebook C
to recover the hologram from the compressed data. The
retrieved vectors approximate, with certain amount of
distortion, the vectors in the original data set S. The
decoding process only requires negligible amount of com-
putation and memory requirement, constituting one of
the major advantages of VQ compression.

Although the VQ decoder is near computation free,
the compression process is computationally intensive be-
cause Eq. (2) has to be repetitively applied to determine
the nearest codevector for each image vector. In the
evaluation of the distance between each pair of vectors,
the square of the difference for each dimension (from
m = 0 to k − 1) has to be computed. With a typi-
cal PC, the encoding time for a 2 048 × 2 048 (pixel)
hologram is nearly one second, which is too lengthy for
real time video application. Therefore, we propose two
measures to accelerate the compression process. Firstly,
we have developed a new VQ scheme known as SDVQ
to lower the average number of dimensions of arithmetic
operations in Eq. (2). Secondly, the SDVQ compression
process is encapsulated as a texture rendering process
that can be executed with the fragment shader in GPU.
As will be explained later, the nearest centroids for all
the image vectors can be conducted concurrently, result-
ing in a significant reduction in the computation time.
The concept of conducting the SDVQ compression in the
GPU is illustrated in Fig. 3.

Essentially, the codevectors are preloaded into the GPU
and converted into the first graphic texture (texture 1).
Subsequently, the Fresnel hologram to be compressed is
decomposed into a set of image vectors, each represent-
ing a non-overlapping square block of the hologram. The
image vectors are then passed to the GPU, and converted
into the second graphic texture (texture 2). In the GPU

 

Fig. 3. Illustration of the SDVQ compression process into a
texture rendering form conducted in the GPU.

memory, a texture is organized as a sequence of texels,
each recording four dimensions of an image vector or a
codevector. As an example, the texture of a single image
vector is shown in Table 2. The pair of textures is input
to the fragment shader, where the nearest codevector for
each image vector is computed using our skip-dimension
method. Finally, the output of the fragment shader is
stored in the output texture (texture 3), and returned
to the CPU as a list of indices associating each image
vector with its nearest codevector, thereby forming the
encoding data.

A fragment shader is a program, written in the Cg
language, which computes the error between each image
vector with all the codevectors in the codebook. The
codevector index with the smallest error will be used to
represent the image vector. In contrast to a program
that runs on a CPU, the codevectors and image vectors
are stored as textures. Thus, the GPU can evaluate all
the image vectors concurrently, leading to significant in-
crease in computation speed. The implementation of the
SDVQ compression method is outlined as follows. As ex-
plained previously, other image vectors will be evaluated
simultaneously using the same methods. Initially, the
error between the image vector and the first codevector
c0 in the codebook, is computed. The error is recorded
in a variable ‘best-error’, and the code index is set to
0 (corresponding to the first codevector). Subsequently,
the accumulated error AEt (where t = [0, k − 1]) is de-
duced in a recursive manner for each of the remaining
codevectors, as given by

AEt+1 = AEt +
(

st
j − ct

q

)2
, (5)

where AE0=0. The recursive process in Eq. (5) is al-
lowed to progress from the current dimension t to the
next dimension (t + 1) if the accumulated error AEt+1 is
smaller than the best-error; otherwise the operation will
be ”pre-terminated” and evaluation on the remaining
dimensions will be skipped. If Eq. (5) has been applied
to all the k dimensions and the total accumulated error
AEt+1 is smaller than the best-error, the latter and the
code index will be replaced by AEt+1 as well as the index
of the corresponding centroid, respectively. After all the
centroids have been evaluated, the code index pointing
to the codevector nearest the image vector will be re-
turned. The method is faster than classical VQ, as the
recursive evaluation of some dimensions of codevectors
will be skipped in our proposed method using Eq. (5).
In view of the latter mechanism, we have named our
proposed method as the SDVQ.

The pair of test images, “lenna’s eyes” and “baboon’s
eyes” shown in Figs. 4(a) and (b), together with the
random image in Fig. 4(c) for generating the codebook,
are employed to demonstrate the effectiveness of our
proposed method. Both test images are planar and lo-
cated at an axial distance of 0.4 m from the hologram.
Equation (1) is applied to generate the ROA holograms
for these two images based on the optical settings in

050901-3



COL 11(5), 050901(2013) CHINESE OPTICS LETTERS May 10, 2013

Table 3. The numerical reconstructed images of the pair
of holograms at the focal plane are shown in Figs. 5(a)
and (b). We observed that the reconstructed images are
similar to the original ones in Figs. 4(a) and (b). Subse-
quently, classical VQ is applied and executed on a typical
PC to compress each ROA hologram with a block size of
16×16 (i.e., b = 16), based on an out-training-set code-
book comprising of 256 code vectors. The codebook is
generated using the LBG algorithm in Table 1, applied
to the ROA hologram of the random image (which is
also positioned at 0.4 m from the hologram) in Fig. 4(c).
The numerical reconstructed images of the compressed
hologram are shown in Figs 6(a) and (b). Apart from
some distortion, they are similar to the ones obtained
from the original ROA holograms. The time taken to
compress each hologram, with the compression process
executed in the CPU of a typical PC, is about one sec-
ond. Comparing with the original complex hologram, a
compression ratio of 512 times is attained.

We applied our proposed SDVQ method, executed
with the fragment shader in GPU, to compress the pair
of ROA holograms. The time taken to compress the
ROA holograms representing the images in Figs. 4(a)
and (b) are 20 and 22 ms, respectively, which is over 40
times faster than the use of the classical VQ compression
executing with a CPU. Note that our proposed method
only increases the speed of the compression process,
and the quality of the compressed hologram is the same
as that employing the classical VQ. Finally, we would
like to compare the computation speed of our proposed
method, based on identical CPU and GPU, with the
existing method[13] that realizes classical VQ compres-
sion on GPU. The comparison is listed in Table 4. We
observed that our method is about 8.5–9.5 times faster.
The experimental results were worked out with the In-
tel Core i7 CPU 950 with 3-GB RAM in Windows XP.
The PC is equipped with the graphics card of NVIDIA
GeForce GTX 580. All the time measurements are the
average of 20 runs in the experiment.

In conclusion, we propose a modified VQ com-
pression method known as the SDVQ, and exe-
cute the algorithm with the fragment shader in
GPU. Experimental evaluation reveals that a ROA

Fig. 4. Images of (a) “Lenna’s eyes” and (b) “baboon’s eyes”;
(c) random image used to generate the hologram for training
the codebook.

Fig. 5. (a) and (b) Numerical reconstructed images of the
hologram representing the images in Figs. 4(a) and (b).

Fig. 6. (a) and (b) Numerical reconstructed images of the
compressed hologram representing the images in Figs. 4(a)
and (b).

Table 3. Settings of Hologram Generation Process

Parameter Value

Hologram Size (pixel) 2 048 × 2 048

Pixel Size of the Hologram (µm2) 7

Quantization of Pixel Intensity

in the Hologram (bit) 16 (8 bit for the real

part, and 8 bit for the

imaginary part)

Wavelength of Light (nm) 650

Angle of the Off-axis Plane

Reference Wave B(y) (deg.) 1.2

Table 4. Comparison of Computation Speed between
Our Proposed Method and Existing Approach

Based on the Classical VQ Executing on the GPU

Computation Time

Source ROA Hologram Classical VQ Our Proposed

(ms) SDVQ (ms)

Hologram Representing the

Single Depth Image

in Fig. 4(a)

185 20

Hologram Representing the

Single Depth Image

in Fig. 4(b)

185 22

hologram composing of 2 048 × 2 048 (pixel) can gen-
erally be compressed in around 20–22 ms using our
proposed method. Compared with the existing state-
of-the-art GPU utilization to realize the classical VQ,
our proposed method is over 8 times faster. Further in-
vestigation can be conducted by applying our proposed
method in other types of holographic data, e.g., the im-
age hologram[14] and the fringe patterns of the virtual
diffraction plane[15].

References

1. T.-C. Poon, Digital Holography and Three-Dimensional
Display: Principles and Applications (Springer, New
York, 2006).

2. T.-C. Poon, J. Info. Disp. 3, 12 (2002).

3. T.-C. Poon, Am. J. Phys. 76, 738 (2007).

4. K. Sasaki, E. Tanji, and H. Yoshikawa, J. Inst. Tele.
Eng. Japan 48, 1238 (1994).

5. E. Darakis and J. J. Soraghan, IEEE Trans. Image Pro-
cess 15, 3804 (2006).

6. A. E. Shortt, T. J. Naughton, and B. Javidi, Opt. Ex-
press 14, 5129 (2006).

050901-4



COL 11(5), 050901(2013) CHINESE OPTICS LETTERS May 10, 2013

7. A. E. Shortt, T. J. Naughton, and B. Javidi, IEEE Trans.
Image Process 16, 1548 (2007).

8. A. E. Shortt, T. J. Naughton, and B. Javidi, Proc. SPIE
5827, 265 (2005).

9. P. W. Tsang, W. K. Cheung, and T.-C. Poon, Appl. Opt.
50, H42 (2011).

10. P. W. Tsang, W. K. Cheung, and T.-C. Poon, in Pro-
ceedings of Digital Holography and Three-Dimensional
Imaging DTuD1 (2011).

11. R. M. Gray, IEEE ASSP Magazine 1, 4 (1984).

12. Y. Linde, A. Buzo, and R. M. Gray, IEEE Trans. Com-
mun. 28, 84 (1980).

13. H. Takizawa and H. Kobayashi, J. Supercomput. 36, 219
(2006).

14. T. Yamaguchi and H. Yoshikawa, Chin. Opt. Lett. 9,
120006 (2011).

15. P. W. M. Tsang and T.-C. Poon, Chin. Opt. Lett. 11,
010902 (2013).

050901-5


